Elemento inverse

De Wikipedia, le encyclopedia libere
Saltar al navigation Saltar al recerca

In mathematica, plus precisemente in algebra e theoria de gruppos, le elemento inverse o inverso de un elemento es le elemento que da le elemento neutre como resultato de un operation. Par exemplo, significa que e le inverso de e, al mesme tempore, que e le inverso de . In caso de un multiplication, per exemplo e es inversos mutualmente, quia .

Definition[modificar | modificar fonte]

Sia un insimul con un operation binari e un elemento neutre , e sia .

  • es sinistroinvertibile o invertibile a sinistre si e solmente si ; in iste caso, es le elemento sinistroinverse o elemento inverse a sinistre.
  • es dextroinvertibile o invertibile a dextre si e solmente si ; in iste caso, es le elemento dextroinverse o elemento inverse a dextre.
  • es invertibile o ambilateremente invertibile o invertibile de ambe lateres si e solmente si ; in iste caso, es le elemento inverse.

Si le operation es un addition, le inverso de es sovente scribite como , e si illo es un multiplication, le inverso de es sovente scribite como .

Altere maniera de scriber[modificar | modificar fonte]

In le litteratura mathematic in anglese o germano, usate es L- pro a sinistre e R- pro a dextre secundo le parolas left/links e right/rechts respectivemente. In iste caso, le terminos esserea L-inverse e R-inverse.

Lege algebric[modificar | modificar fonte]

Le lege correspondente pro structuras algebric es le existentia de un elemento inverse, per exemplo in gruppos.

Involution[modificar | modificar fonte]

Le operation es un involution, quia .

Vide etiam[modificar | modificar fonte]