De Wikipedia, le encyclopedia libere
In algebra linear , un forma sesquilinear [ 1] es un function
f
:
V
×
W
→
F
:
(
v
,
w
)
↦
f
(
v
,
w
)
=
⟨
v
,
w
⟩
{\displaystyle f:V\times W\rightarrow F:(v,w)\mapsto f(v,w)=\langle v,w\rangle }
que adjunge duo vectores del spatios vectorial complexe
V
{\displaystyle V}
e
W
{\displaystyle W}
a un valor scalar del corpore
F
{\displaystyle F}
(sovente
F
=
C
{\displaystyle F=\mathbb {C} }
) tal que pro
v
,
v
1
,
v
2
∈
V
{\displaystyle v,v_{1},v_{2}\in V}
,
w
,
w
1
,
w
2
∈
W
{\displaystyle w,w_{1},w_{2}\in W}
, e
λ
∈
C
{\displaystyle \lambda \in \mathbb {C} }
es ver
⟨
v
1
+
v
2
,
w
⟩
=
⟨
v
1
,
w
⟩
+
⟨
v
2
,
w
⟩
{\displaystyle \langle v_{1}+v_{2},w\rangle =\langle v_{1},w\rangle +\langle v_{2},w\rangle }
⟨
λ
v
,
w
⟩
=
λ
¯
⟨
v
,
w
⟩
{\displaystyle \langle \lambda v,w\rangle ={\overline {\lambda }}\;\langle v,w\rangle \quad \quad \quad \quad \quad \quad \quad \quad }
(Semilinearitate in le prime argumento )
⟨
v
,
w
1
+
w
2
⟩
=
⟨
v
,
w
1
⟩
+
⟨
v
,
w
2
⟩
{\displaystyle \langle v,w_{1}+w_{2}\rangle =\langle v,w_{1}\rangle +\langle v,w_{2}\rangle }
⟨
v
,
λ
w
⟩
=
λ
⟨
v
,
w
⟩
{\displaystyle \langle v,\lambda w\rangle =\lambda \,\langle v,w\rangle \quad \quad \quad \quad \quad \quad \quad \quad }
(Linearitate in le secunde argumento ).
In le corpore
R
{\displaystyle \mathbb {R} }
del numeros real , le forma sesquilinear concorda con le forma bilinear.
↑
Derivation (in ordine alphabetic):
(ca ) ||
(de) Sesquilinearform ||
(en) Sesquilinear form ||
(es) Forma sesquilineal ||
(fr) Forme sesquilinéaire ||
(it) Forma sesquilineare ||
(pt) Forma sesquilinear ||
(ro )
|| (ru) Полуторалинейная форма