Recta

De Wikipedia, le encyclopedia libere
Saltar a: navigation, cercar
Tres lineas — le lineas rubie e blau ha le mesme pendente, e le ones rubie e verde ha le mesme ordinata al origine.

Le notion de recta (etiam line recta) era introducite per le mathematicos ancian pro representar objectos recte con latitide e profunditate negligibile. Rectas es un idealisation de tal objectos. Ergo, usque le seculo XVII, rectas se defini como isto: "Le linea es le prime specie de quantitate, que ha solmente un dimension, a saper longitude, sin alicun latitude ni profunditate, e non es altere cosa que le fluxo o curso del puncto que [...] lassara de su movimento imaginari qualque vestigio in longitude, exempte de tote amplitude. [...] Le linea recte es illo que es equalmente exdentite inter su punctos."[1]

Semirecta[modificar | modificar fonte]

Si le concepto de "ordine" de puncto de un recta se defini, un semirecta (o radio) pote definir se in plus. Un semirecta es parte de un recta que es finite in un direction, ma infinite in le altere. Illo pote esser definite per duo punctos, le puncto initial A, e un altere B. Le semirecta es tote le punctos in le segmento inter A e B insimul con tote punctos C in le recta per A e B tal que le puncto appare in le recta in le ordine A, B, C.[2]

Ray (A, B, C).svg

Referentias[modificar | modificar fonte]

  1. In francese (antiquate): "La ligne est la première espece de quantité, laquelle a tant seulement une dimension à sçavoir longitude, sans aucune latitude ni profondité, & n'est autre chose que le flux ou coulement du poinct, lequel [...] laissera de son mouvement imaginaire quelque vestige en long, exempt de toute latitude. [...] La ligne droicte est celle qui est également estenduë entre ses poincts." Paginas 7 e 8 de Les quinze livres des éléments géométriques d'Euclide Megarien, traduits de Grec en François, & augmentez de plusieurs figures & demonstrations, avec la corrections des erreurs commises és autres traductions, per Pierre Mardele, Lyon, MDCXLV (1645).
  2. Faber, Richard L. (1983). Foundations of Euclidean and Non-Euclidean Geometry. New York, United States: Marcel Dekker, 303. ISBN 0-8247-1748-1. 
Pecietta
Logo

Iste pagina usa contento del Wikipedia in anglese. Le articulo original se trova a en:Line (geometry), e es usate secundo le mandatos del licentia de Wikipedia.